3.361 \(\int \frac{\sqrt{b x^2+c x^4}}{x^{11/2}} \, dx\)

Optimal. Leaf size=146 \[ -\frac{2 c^{7/4} x \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{\frac{b+c x^2}{\left (\sqrt{b}+\sqrt{c} x\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right ),\frac{1}{2}\right )}{21 b^{5/4} \sqrt{b x^2+c x^4}}-\frac{4 c \sqrt{b x^2+c x^4}}{21 b x^{5/2}}-\frac{2 \sqrt{b x^2+c x^4}}{7 x^{9/2}} \]

[Out]

(-2*Sqrt[b*x^2 + c*x^4])/(7*x^(9/2)) - (4*c*Sqrt[b*x^2 + c*x^4])/(21*b*x^(5/2)) - (2*c^(7/4)*x*(Sqrt[b] + Sqrt
[c]*x)*Sqrt[(b + c*x^2)/(Sqrt[b] + Sqrt[c]*x)^2]*EllipticF[2*ArcTan[(c^(1/4)*Sqrt[x])/b^(1/4)], 1/2])/(21*b^(5
/4)*Sqrt[b*x^2 + c*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.182391, antiderivative size = 146, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.238, Rules used = {2020, 2025, 2032, 329, 220} \[ -\frac{2 c^{7/4} x \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{\frac{b+c x^2}{\left (\sqrt{b}+\sqrt{c} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{21 b^{5/4} \sqrt{b x^2+c x^4}}-\frac{4 c \sqrt{b x^2+c x^4}}{21 b x^{5/2}}-\frac{2 \sqrt{b x^2+c x^4}}{7 x^{9/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[b*x^2 + c*x^4]/x^(11/2),x]

[Out]

(-2*Sqrt[b*x^2 + c*x^4])/(7*x^(9/2)) - (4*c*Sqrt[b*x^2 + c*x^4])/(21*b*x^(5/2)) - (2*c^(7/4)*x*(Sqrt[b] + Sqrt
[c]*x)*Sqrt[(b + c*x^2)/(Sqrt[b] + Sqrt[c]*x)^2]*EllipticF[2*ArcTan[(c^(1/4)*Sqrt[x])/b^(1/4)], 1/2])/(21*b^(5
/4)*Sqrt[b*x^2 + c*x^4])

Rule 2020

Int[((c_.)*(x_))^(m_)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a*x^j + b*
x^n)^p)/(c*(m + j*p + 1)), x] - Dist[(b*p*(n - j))/(c^n*(m + j*p + 1)), Int[(c*x)^(m + n)*(a*x^j + b*x^n)^(p -
 1), x], x] /; FreeQ[{a, b, c}, x] &&  !IntegerQ[p] && LtQ[0, j, n] && (IntegersQ[j, n] || GtQ[c, 0]) && GtQ[p
, 0] && LtQ[m + j*p + 1, 0]

Rule 2025

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(c^(j - 1)*(c*x)^(m - j +
 1)*(a*x^j + b*x^n)^(p + 1))/(a*(m + j*p + 1)), x] - Dist[(b*(m + n*p + n - j + 1))/(a*c^(n - j)*(m + j*p + 1)
), Int[(c*x)^(m + n - j)*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IntegerQ[p] && LtQ[0, j,
n] && (IntegersQ[j, n] || GtQ[c, 0]) && LtQ[m + j*p + 1, 0]

Rule 2032

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[(c^IntPart[m]*(c*x)^FracP
art[m]*(a*x^j + b*x^n)^FracPart[p])/(x^(FracPart[m] + j*FracPart[p])*(a + b*x^(n - j))^FracPart[p]), Int[x^(m
+ j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j] && PosQ[n
- j]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rubi steps

\begin{align*} \int \frac{\sqrt{b x^2+c x^4}}{x^{11/2}} \, dx &=-\frac{2 \sqrt{b x^2+c x^4}}{7 x^{9/2}}+\frac{1}{7} (2 c) \int \frac{1}{x^{3/2} \sqrt{b x^2+c x^4}} \, dx\\ &=-\frac{2 \sqrt{b x^2+c x^4}}{7 x^{9/2}}-\frac{4 c \sqrt{b x^2+c x^4}}{21 b x^{5/2}}-\frac{\left (2 c^2\right ) \int \frac{\sqrt{x}}{\sqrt{b x^2+c x^4}} \, dx}{21 b}\\ &=-\frac{2 \sqrt{b x^2+c x^4}}{7 x^{9/2}}-\frac{4 c \sqrt{b x^2+c x^4}}{21 b x^{5/2}}-\frac{\left (2 c^2 x \sqrt{b+c x^2}\right ) \int \frac{1}{\sqrt{x} \sqrt{b+c x^2}} \, dx}{21 b \sqrt{b x^2+c x^4}}\\ &=-\frac{2 \sqrt{b x^2+c x^4}}{7 x^{9/2}}-\frac{4 c \sqrt{b x^2+c x^4}}{21 b x^{5/2}}-\frac{\left (4 c^2 x \sqrt{b+c x^2}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{b+c x^4}} \, dx,x,\sqrt{x}\right )}{21 b \sqrt{b x^2+c x^4}}\\ &=-\frac{2 \sqrt{b x^2+c x^4}}{7 x^{9/2}}-\frac{4 c \sqrt{b x^2+c x^4}}{21 b x^{5/2}}-\frac{2 c^{7/4} x \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{\frac{b+c x^2}{\left (\sqrt{b}+\sqrt{c} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{21 b^{5/4} \sqrt{b x^2+c x^4}}\\ \end{align*}

Mathematica [C]  time = 0.0154649, size = 57, normalized size = 0.39 \[ -\frac{2 \sqrt{x^2 \left (b+c x^2\right )} \, _2F_1\left (-\frac{7}{4},-\frac{1}{2};-\frac{3}{4};-\frac{c x^2}{b}\right )}{7 x^{9/2} \sqrt{\frac{c x^2}{b}+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[b*x^2 + c*x^4]/x^(11/2),x]

[Out]

(-2*Sqrt[x^2*(b + c*x^2)]*Hypergeometric2F1[-7/4, -1/2, -3/4, -((c*x^2)/b)])/(7*x^(9/2)*Sqrt[1 + (c*x^2)/b])

________________________________________________________________________________________

Maple [A]  time = 0.181, size = 142, normalized size = 1. \begin{align*} -{\frac{2}{ \left ( 21\,c{x}^{2}+21\,b \right ) b}\sqrt{c{x}^{4}+b{x}^{2}} \left ( \sqrt{{ \left ( cx+\sqrt{-bc} \right ){\frac{1}{\sqrt{-bc}}}}}\sqrt{2}\sqrt{{ \left ( -cx+\sqrt{-bc} \right ){\frac{1}{\sqrt{-bc}}}}}\sqrt{-{cx{\frac{1}{\sqrt{-bc}}}}}{\it EllipticF} \left ( \sqrt{{ \left ( cx+\sqrt{-bc} \right ){\frac{1}{\sqrt{-bc}}}}},{\frac{\sqrt{2}}{2}} \right ) \sqrt{-bc}{x}^{3}c+2\,{c}^{2}{x}^{4}+5\,bc{x}^{2}+3\,{b}^{2} \right ){x}^{-{\frac{9}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^4+b*x^2)^(1/2)/x^(11/2),x)

[Out]

-2/21*(c*x^4+b*x^2)^(1/2)/x^(9/2)/(c*x^2+b)*(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1/
2))/(-b*c)^(1/2))^(1/2)*(-x*c/(-b*c)^(1/2))^(1/2)*EllipticF(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/2
))*(-b*c)^(1/2)*x^3*c+2*c^2*x^4+5*b*c*x^2+3*b^2)/b

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c x^{4} + b x^{2}}}{x^{\frac{11}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2)^(1/2)/x^(11/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^4 + b*x^2)/x^(11/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{4} + b x^{2}}}{x^{\frac{11}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2)^(1/2)/x^(11/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^4 + b*x^2)/x^(11/2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**4+b*x**2)**(1/2)/x**(11/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c x^{4} + b x^{2}}}{x^{\frac{11}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2)^(1/2)/x^(11/2),x, algorithm="giac")

[Out]

integrate(sqrt(c*x^4 + b*x^2)/x^(11/2), x)